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SOME EXTREMAL PROBLEMS FOR FUNCTIONS
OF BOUNDED BOUNDARY ROTATION

BY
ROMAN BOUTELLIER AND ALBERT PFLUGER

ABSTRACT

A variational method is developed within the class of functions of boundary
rotation not exceeding k« which is based on the fact that the set of representing
measures w is convex. It shows that an extremal problem related to a functional
with Gateaux derivative and some constraints leads to extremal measures g,
with finite support. The positive and negative part of a u, is located at points
where a function J (depending on u,) reaches its maximum and minimum
respectively. The method is tested successfully on various problems.

1. Introduction
For k =2 let Vi denote the class of locally univalent functions,
f@y=z+az*+ - +a.z"+ -,

in the unit disc D = {| z | < 1} which have boundary rotation at most k - , i.e.

2m

lin;l dg § k * .
r— 0

d . .
arg - f(re”)

A function f with f(0) = 0, f'(0) = 1, belongs to V. if and only if it is a solution of
the differential equation

" 111 i0
1) 1+ Z‘{;((zz)) = 2 1 t:iaj du(6),

where u is a real measure with support on the interval [0, 27r] (or sometimes on
another interval of length 27, or equivalently on the unit circle {|z | = 1}), such
that

@ [aw=2  [laui=k
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This result is due to Paatero [8]. In the sequel we shall denote the set of all such
measures i by M. Integrating the above differential equation we get the
integral representation

3) f(z)= expj —log(1—e“z)du.

If the positive part of u is concentrated on 6 = 0 and its negative part on 8 = ,
we get the function Fi,

, 1+z ki2—1
Fk(z)=%1__—z)Lk/2—+Ta

which is extremal for many problems in V;: For example F, maximizes Re a, for
all n within V, as was shown by D. A. Brannan, J. G. Clunie and W. E. Kirwan,
and by D. Aharonow and S. Friedland in 1973 (Ann. Acad. Sci. Fenn. Sci. Al
523 and 524).

In the paper we introduce side restrictions of the form

a= - =a, =0

As we shall see, this gives rise to certain symmetries. The problems, restricted
and unrestricted, are solved by a variational method which is an elaboration of
the simple fact that M, is convex. The method may be applied to other kinds of
extremal problems involving such measures.

2. Standard variations (u.-variations)

We denote by H the space of holomorphic functions on the unit disc, provided
with the topology of locally uniform convergence. Let ¢ be a complex-valued
functional on Vi which is Gateaux differentiable on V,, i.e. for each f € V, there
exists a continuous linear functional L = L; on H, such that

4 d(fteg)=d()+e -L(g)to(e), &—0,

for each g € H with f + eg € Vi, where o(¢)/e converges to zero uniformly in g
on a compact subset of H. L, is called the Géateaux derivative of ¢ at f. Since
g(0)=0, there exists on H a continuous linear functional L’ such that L(g)=
L'(g’) for functions g appearing in (4). Thus we may write (4) in the form

) o(f+zg)=d(f)+e-L'(g")+o(e).

For each p, of M, we define a class of standard variations by

e =(1—€) pote -p=pote(pn—po)
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where u isin M, and 0 = ¢ = 1. Since M is convex, this is a variation within M,.
Let by the integral (3) f. correspond to . ; then f. is the standard variation of
fo corresponding to the arbitrarily chosen p of M;:

fiie) = exp [ ~log(1~ e“2)d(ua+ e (1~ )

= fi(2) = - fi(2) | 1og(1 = €"2)d s — o)+ O(e).
By the integration we get the standard variation of f:
fo=fotelg + O(e) +o(e)
where
©) g1)= - [ fite)log(1 - e*2)d (o — ).
Thus, from (5) it follows
8(F)= 6 +eL(g + O() + o(e)
= (f)+eL'(g") + ole).

L’ has the well known representation (see e.g. [13])

™

® @)= [ g©)de)
where ¢ is a finite Borel measure on a compact subset C of D. Thus, if f;

maximizes Re ¢ in V, it follows from (7) that Re L'(g’)=0 for all g’ of (6);
hence by (8)

Re{ [ - Ri(@)iog(1 - e")db(€)d(n — uo) | 0.

Define now

©) 10)= —Re [ fite)log(1-"6)du @)
to get

(10) [ 1@ - 50

for all u € M.
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This is a necessary condition for f, to maximize Re ¢ in V.. J is called the
indicator corresponding to f, and L.

In order to get more information from condition (10), let us recall that any two
probability measures » and v’ on [0,27] define by

(11) w=k2+1)-v—(k2-1)-v'

a measure of M, and that conversely each w of M, is representable in this form.
((k/2+1)v and (k/2 — 1)v' need not be the upper and lower variation of u, see
{10}

Let now v, and vy be two probability measures representing the extremal
measure u, in (11). It follows from inequality (10) by choosing first v arbitrarily
and v' = vi, second v = v, and v’ arbitrarily, that

f](())d(v—vo)éﬂ and f](ﬂ)d(v'—v())éﬂ

for all probability measures v and v’. These two conditions imply that v, is
supported by those points of [0,27], where J reaches its maximum, and v by
those points where J attains its minimum.

Therefore, it is of interest to know in which cases J(8) is not a constant,
because then, J(8) being real-analytic, the sets supp v, and supp v, have to be
finite.

The claim is that J(8) is constant (hence zero) if and only if the Gateaux
derivative L is constant on V.. This may be seen as follows. J being constant
implies by (9) L'(z2"fs(2))=0, n=1,2,---. Hence L’'(gfs) =0 for each g of H
with g(0) = 0, and because of fo(2)# 0 in D it follows L'(f — f(0)) = 0 for all f of
H. From L(f — f(0))= L'(f’) we conclude that there are constants a and b such
that

Lfy=a-fO)+b-f(0) fEH,

and this implies that L is constant on V..

The converse is trivial because for each 6 the analytic function
fo(z)log(1 — ze™) is the locally uniform limit of functions of Vi, the derivatives
of V..

Therefore, if L is not constant on V,, the indicator J has finitely many
(absolute) maxima carrying v, and finitely many (absolute) minima carrying vy.
Hence, v, and vq have disjoint supports and this implies that wq = (k/2+ 1),
and po = (k/2 —1)v, are the upper and lower variation of . Thus the extremal
function f, has boundary rotation precisely k.
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Summarizing we have

LeMMA 1. Let ¢ be a functional on V, admitting at each function of Vi a
Gadteaux derivative which is not constant on V. Let f, maximize Re ¢ within V,
and let ] be the indicator (9) corresponding to f, and the Gateaux derivative L at f,.
Then, if uo is the representing measure of fo, the inequality

f J(0)d (i — o) =0

is satisfied for each p of M. This extremality condition holds if and only if the
positive and the negative part of p is carried by those disjoint finite subsets of
[0,27] on which J reaches its maximum and minimum respectively :

supp po C{6:J(6) = max J},
12
(12) supp mo C{6:J(0)=minJ}.
Moreover, the boundary rotation of f, is precisely k.

REMARKs. (1) Support points of V, are extremals of linear functionals which
are not constant on V,. Lemma 1 immediately implies that each support point of
V. has boundary rotation k and has a representing measure with finite support.

(2) Lemma 1 sharpens a result given by Kirwan and Schober [2] which says
that the extremal function f, has a representing measure with finite support and
total variation =k.

(3) Although at first glance condition (12) looks quite promising for solving
extremal problems one has to be aware that the indicator J depends on the
unknown function f, and this dependence can have a severe impact on the
number and the location of the maxima and minima of J. Nevertheless it is
possible to come to a complete determination of the extremal measure in quite a
few cases (cf. [1] for the case of starlike functions).

Now we add constraints to our extremal problem by introducing on M, the
functionals

B = [ X@ds  j=1n

where the X;(9) are real-valued functions on {0, 27]. For fixing the situation we
suppose that they are continuous and that no non-trivial linear combination of
them is constant. Therefore the set

13) A ={(xp) - %)) | 1 € Mi),
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which is a compact and convex subset of R” contains interior points, i.e. A is a
convex body in R".

Let J(8) be a real-valued and continuous function on [0, 27r] such that J(8),
Xi(0),..., X.(0) and the constant 1 are linearly independent. Choose a point
3 = (¢, -+, &) in the interior of A and consider the problem of maximizing on
M, the functional

yw)= [ IO

under the side conditions x,(w)=¢, j=1,---,n or shortly x(n)=£&

LemMa 2. Let the function J, X,,---, X, satisfy the above conditions and
consider, with the above notations, the problem of maximizing y(u) over My under
the constraints x(u) = &, where & is an inner point of A. Then there are real
numbers A, - -, A, (Lagrangian multipliers) such that

max (y(r)+ Aix(u) + o+ Axa () = max{y(u)| u € M, x(n) = £}.

Proor. The set

B = {(Y(IJ' )’ xl(l‘")7 Tt Xa (lu’))}#EMk

is a convex body in R""'. Because ¢ is in the interior of A, the straight line x = ¢
in R""' intersects B in a segment not reducing to a point. Let § be its upper
endpoint, i.e.

5 = max{y | x = & (y.x) € B}.

Obviously (¥, £) is on the boundary of B and there is at least one supporting
hyperplane to B through (¥, ).
Let Ag, Ay, - -+, A, be a normal vector such that

Ay =)+ Axi = &)+ -+ A(x — €)<0

for all interior points (y,x) of B. Let (y;, ) be such an interior point which
obviously exists. Then it follows A(y, — ) <0 and because of y, < y this implies
Ao >0 and therefore we always may assume A, = 1.

Hence

mMalx(y(;l.)+/\lxn(;u)+ A Ax(u) =Y

which proves the Lemma.
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The implications of Lemmas 1 and 2 for constrained extremal problems in V;
are given in the following

THEOREM 1. Let the functions X,(0), j =1, -+, n, be real-analytic on [0,27]
and let them together with the constant 1 be linearly independent. Let the
functional ® on V, admit Gateaux derivatives L = L, for each f of Vi such that the
corresponding indicators J are never a linear combination of the X, and the
constant 1. If f, maximizes Re ® over V, under the side conditions

(19 [x@du=t j=1n

where (£, -+, &) is an inner point of A (cf. (13)), then its representing measure 1o
has finite support, its total variation | po|| is k (i.e. fo has boundary rotation k), and
there are multipliers A,, - - -, A, such that on the disjoint supports of the upper and of
the lower variation of w, the function

Y=J+AX+ - +AX,

reaches its maximum and its minimum respectively, i.e. we have the relations (12)
with J replaced by Y.

Proor. From the section preceding Lemma 1 it follows that
JJ(0)d(p — po) =0 for each measure p of M, satisfying the constraints (14),
because w. = po+ e(w — wo), 0= ¢ =1, satisfies (14) if po and pu do so. This
implies that p, maximizes the functional [ J(8)dp over M, under the conditions
(14). Being this way within the frame of Lemma 2 the conclusion of Theorem 1
follows at once, since Y is real-analytic and non-constant.

3. The range of log f'(a)

To each f of Vi corresponds the function log f'(z), which is holomorphic in
the unit disc D and vanishes at the origin. For a fixed a €D we consider the
range

Ri(a)={logf'(a):fE Vi }.

Without loss of generality we may suppose a to be positive. Since M, is convex
and

logf'(@)= [ ~log(1—ae)du,  nEM,

the range Ry (a) is convex as well, and it contains the origin since the identity
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mapping belongs to V.. To determine the boundary of R.(a) it is therefore
sufficient to maximize

(15) Refe " log f'(a)}

within V, for each ¢ €R.
The corresponding indicator J is given by

J(0)=Re{—e*log(l—ae”)}.
The curve
0—log(l—ae”), 0=0=2m,

is convex and so the support of the extremal measure u, consists of exactly two
points: w, and p, are concentrated at the points where J reaches its unique
maximum and minimum, respectively. At these points we have

i

al _ _is_iae }= a e (i
a0 Re{e 1—ae® Il_aeia lzlm{e (e a)}

and they are obtained by intersecting the unit circle with the straight line
{a+re”: XA ER}.

THEOREM 2. For each a of (0,1) the range
Ri(a)={logf'(a):f € Vi}
is convex and its boundary is given by the curve
60— —(k/2+1)log(1—ae”®)+(k/2—1)log(1—ae”), 6€|0,27|
where ¢ and e*' lie on a straight line through a.

For ¢ =0 in (15) the above theorem is due to Loewner [6] and for ¢ = #/2 to
Paatero [8]. For general ¢ see [10] and [11] as well.

Now we consider the problem of maximizing Re{log f'(a)} under the side
condition f"(0) =0, i.e. to determine a function f, in Vi such that f3(0) = 0 and

Ref{log fo(a)} = max Re{log f'(a): f € Vi, f'(0) = 0}
(16)
=max{ —%f log(1+a’—2acos0)du : EMk,fe“’dy. =0}.

Note that f"(0) =0 for all odd functions of V..
The indicator corresponding to L = Re{log f'(a)} is given by

J(8)= —ilog(1+a’—2a cos6}.
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According to Lemma 2 there are multipliers A; such that with
Y(6)=J(6)+ Aicos @+ A;sin 8

we have

17) max f Y(8)dp = f J(8)du,

where u, is the representing measure of f,. Referring to the proof of Lemma 2,
with cos 8 = X,(8) and sin 8 = X,(8), the functionals y(n) and x,(u) remain
unchanged while x-(u) changes sign if 1 (8) is replaced by f(0)=pu (2w — 0).
Therefore the body B is symmetric to the plane x, = 0 and consequently we may
choose A, =0. Hence supp nq and supp po are subsets of [0,27], where

Y(0)=J(6)+ A, cos b

attains its maximum and minimum respectively. The derivative

ay_ _ o (____a
dg = ~swnd (1+a2—2acose+A‘>

vanishes for @ =0 and 6 = 7 and possibly for two other points @ and — a, where
0<a<m and a+A,(1+a’~2acosa)=0. f 0 and = were the only zeros,
Y (6) would have the only maximum at # = 0 and the only minimum at § = m, or
vice-versa, and this would violate the side condition f cos 8du, = 0. Hence there
are two further zeros a and — a. Since the second derivative d*Y/d6? is positive
for 8 = £ a, these are the points where Y attains its minimum. Local maxima
and minima being alternating it follows that § =0 and 6 = 7 are maxima. But
we cannot be carried by 8 =0 or 8 =1 alone, because of the restriction
Jcos 8du,=0. Both points have to be absolute maxima and the equations
Y(0)= Y(w) and dY/dO (a) =0 determine A, and a:

2

+a 1 a
7a - 173 2<cosa<a.
gl—a

(18) cosa = 1

The side conditions [ cos 8du, = fsin 8du, =0 imply that u, has equal masses
3(k/2—1)at @ = + & and that u, has masses (k/2+1)-m and (k/2+1)- (1 —m)
at the points ¢ =0 and § = 7 respectively, where

_1 k-2 11+a
(19) m—2<1+k+2cosa>, me(z,——2 )

It is interesting to observe that @ depends on a but not on k.
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THEOREM 3. Let the function f, maximize Re{log f'(a)} among those func-
tions f of V. that satisfy the side condition f"(0)=0. Then f, is unique and

emz)(l _e—ia ]k/4—1/2

[a
fo(l) [(1 Z)m(l'f'l)l m]k/2+1 >

where a and m are defined by (18) and (19).

ReEMARKs. (1) The function f, of this Theorem is odd if and only if k =2, i.e.
in this case the extremality of | f'(a)| under the condition f”(0) = 0 forces f, to be
odd, but no more if k >2.

(2) In [9] J. A. Pfaltzgraff and B. Pinchuk introduced the class A, of
meromorphic functions of boundary rotation =k. These are functions rep-
resented in D by f(z)=1/z + b+ b,z + - - - such that

f(z)#0 and hmf daargdof(re"’) =k

For a fixed a, 0<a <1, these authors considered the problem of maximizing
and minimizing |f'(a)| over A.. They have shown that f€ A, if and only if

£(2)= - Lrexp [ 1og (1 - 26",

where u € M, and f e“dy =0, and, using a Golusin type variation, have shown
that the extremal measures have to be located on at most 4 points of [0,27].
Using this fact J. Noonan [7] has completely determined these measures with a
method working in this specific situation.

The problem actually reduces to maximizing and minimizing [ log|1 — ae’ | du
over M, under the side condition [ e du = 0. The minimum part of it has been
also solved above and the maximum can be handled in a similar, although
slightly more complicated way. Along the same line one can solve the same
problem under a side condition [e”du =r, where r is a given number of the
interval (—k, k).

4. Vanishing first. coeflicients
Let us recall that f € V, if and only if

"

z 1+e"’z
1-¢°z z

12'

=1tcztez’+ -,
where
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Cu =I e™dy and u EM.

Comparing coefficients we get
2-1-a,=cy,

(20) 3'2'a3=C2+2a2'C1,

n-(n—1a. = cu1+2a:6, 2+ -+ +(n—1a,-.c;.

Thus
(21) a="=a,=0
if and only if
=" =Cn1=0,
and in this case the recursion formula (20) simplifies to
nin—1)-a, = ca-, m<n=2m

1
=Com +—"Ch, n=2m+]1.
m

Israel J. Math.

Schiffer and Tammi [12] have shown by the help of their variational method, that
for n = m +1 the maximum of Re a,, under the restrictions (21) is attained by

the symmetric function

, 1+zn—1 k/2—11/n—-1
(22) f(z)= [%l_—zn—-l%]
Hence

f(z)=l+n—(ni_'T)Z"+

The next theorem shows that this remains true for all n with m <n =<2m and

that the situation changes completely if n =2m + 1.

THEOREM 4. Let f € Vi satisfy the conditions (21):

f2)=z+naz2™ "+ pi2z™+ -0, mz2

Then

Rea, = if m<n=2m,

Kk
n(n-1)’
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and equality occurs for the (n — 1)-fold symmetric function f given by (22).
If n =2m +1 then

2m(@2m +1)Rea, =2+ k’*/m form =k/2 and

(k +2)

2m(2m +1)Rea, =k tam —k=2)

for m =k /2.

In the first case equality occurs for the function f, with derivative

fi(z)=[g1+_zzﬁ]w

(1 — zm)k/2+1

k2
m

L +—1——(2+ )zz’"+
m 2m

and for the function — f,(—z). In the second case we have equality for the
functions f,(z) and — f,(— z), where

, _ (1 _eiazm)(l _e—iazm)k/4—1/2 ym
fZ(Z)_[ (l_zm)k/2+l ]

[(3+1)-(3-1)eose ="

L Jk_ﬂﬁ_] .
+2 [k+4m—(k—2)z +

—1+1
m
1

m

and « is given by

k+2
k—2—-4m’

cosa = a €(7/2, w).

ReEMARK. Let f(z)=1/z+ao+a;z+ --- +a,z" + --- be a function of the
class A, as defined in Remark (2) following Theorem 3. Noonan [7] has shown
that |a,| = k/2 and |a| = k/6, and that these bounds are sharp. To determine
the maximum of | a;| over A, it is sufficient to find min Re a; within this class.
From z°- f'(z) = —exp(— g(z)), with

g(z)=%6222+%6323+ic4z4+ and
c,-=feyodp,, LEM, j=12,---,

it follows

3a;= %(C«t _‘%C%)-
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It thus remains to maximize Re{f e*’ —4(f ¢**du )’} over M, under the side
condition [e”“du =0. As it turns out in the following proof, this is just the
problem of the above theorem for m =2 and n =5.

Proor. (1) Case: m <n =2m
This case can be settled without any variational method: with u =
(k/2+ 1)y —(k2—1)v' (cf. (11)) we have

n(n—1)Rea, = f cos(n —1)0du

=(k/2+ I)I cos(n —1)6dv — (k/2— I)J cos(n — 1)6dv’

=kR2+1+(k2-1)=k -

Equality occurs if and only if » and »' are concentrated on the sets

{021.:;2._%11‘} and {02i+1=2r{_L}77}, j=01”')n—21

respectively. For equally distributed measures we get (22), and the first part is
proved.

For any probability measures v ={(6,v)} and v’ ={(65.,v})}, j=
0,---,n —2, on the above sets, the conditions ¢; = - -+ = ¢, =0 together with
2y =1 and 2 v;=1 represent a linear system which admits always the solution
v; = vj=1/(n — 1), but there is only this one if n =m +1.

(2) Case: n =2m +1

Here we have to maximize

2
2m +1)2m Re a2m+,=Re{f e du +—'1T(f e"""’dp,) }
1 2

=] cos2mé du +7n_(f cosmodp,)

1 2
“m (J’ siandu) ,

under the restrictions
(23) ci=feii9d“ =0’ j=1’...,m_1.

The integral [sin m6du has to vanish in the extremal case, because otherwise
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the measure o= 3(po(0)+ wo(27 — 0)) would yield a bigger value. Thus it
remains to maximize

R(u)=fcos2m0 du +711— U' cos mo du]'

under the restrictions (23). The indicator J corresponding to the functional R (i)
is given by

J(0)=cos2m@ +c -cosmf,  where ¢ = %f cos modLo.

Using complex notation Lemma 2 and Theorem 1 imply that there are complex
multipliers A, - - -, A._; such that

max [y(w)+Re{rici(u)+ - + AmosCna )} = 9,

where y(u)=fJ(8)du and

y=max{y(p)|p EMy, ¢;(n)=0,j=1,--,m -1}

2wi/m

Let e=¢ and let u, be obtained from a measure u by setting . (8)=
u(0 +2nk/m), k =1,2,---,m —1. Since J remains unchanged and the ¢;(n)
get multiplied by ¢* when u is replaced by w, it follows that all the points
(%, cie, +y Cna€ ™), k =0,1, - -, m — 1, belong to the body B considered in
the proof of Lemma 2, if one of them does so. Adding the inequalities

m-—1
y+Re[2 )t,c,e“f}éy', k=01,---,m-—1,
i=1

implies y(u)=y for u € Mi and because of maxs, y(1)= y we conclude that
maxy, y(n) =¥, i.e. the extremal measures of our problem are among those
which maximize R (u) over M. Thus we first may handle the problem as if there
were no constraints and then single out those extremal measures which satisfy
the side conditions (23).

The maximum of R (1) over M, was determined by R. J. Leach (cf. [4]). Using
a stepfunction method he showed that

2
R(,u,)§2+-;— for m=k/2 and

k +2)
R(u)=k +#——(E%7) for m=k/2,

and that the functions f; and f, in Theorem 4 are extremal respectively.
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5. In order to get all extremal functions, we consider the general problem of
maximizing the functional

2
R(u)=Re[j e du + A (f e‘"“’du) }
2 2
=I cos 2médu +A(f cosmOdp,) —A(fsinm()dp,)

over M, without any constraints, where A is a real number and m a positive
integer.

For m =1 this problem has been solved by Kirwan and Schober [3] as well as
by Lehto and Tammi (cf. {S] on page 79) with different methods.

The case A =0 is trivial. We have R(u) = k and equality occurs if and only if
p* and p” (the positive and negative variations of u ) are carried by the sets

m

24) 0%, mly ang L 2T .. 2m-l

2m’2m’  ’ m

m

respectively. The distribution of ™ and u~ within these sets is irrelevant.
If A >0, we get

(25) f sin mldu, =0

as a first necessary condition for an extremal measure w,, and it remains to
maximize

2
Ro(u)=fc052m0 du +)\([ cos mb du)

over M,. Lemma 1 provides a second necessary condition, namely

(26) J’ J(0)d(1 — o) =0 for all u of M,,
where
27) J(@)=cos2Zmb@+c-cosmf and c=2Ar-: f cos m@ dpc.

According to this lemma, p, has to be concentrated on the zeros of
dJ/d0 = —m -sinm@ - (4cos mé + c).

It is sufficient to consider the case ¢ =0, because the equation wq(0)=



Vol. 39, 1981 FUNCTIONS OF BOUNDED BOUNDARY ROTATION 61

wo(@ + /m) establishes a one-to-one relation between the measures u, corre-
sponding to some ¢ and those which correspond to ¢’ = —c.
Obviously there are the two sets

(28) {%21} and {%‘2"“)},—:@.4.,»,

of zeros, and if |c| = 4, these are the only ones. J reaches its maximum on the
first set and its minimum on the second one. Hence w o and wq have to be spread
over these two sets respectively in a completely arbitrary way, and we get the
first bound

R(uog)=2+2A-k*> and c¢=2Ak.

Since ¢ =4, this extremal measure can occur only when Ak =2.
If 0= ¢ <4, there is a unique « in (0, 7) satisfying 4 cos & + ¢ = 0 and we have
the further zeros
a 27rxa 2m-(m—lj*a

@9) B T

If ¢ =0, then a = 7/2 and J reaches its maximum and its minimum on the first
and the second set of (24) respectively, i.e. we are in the case of A = 0. Hence,
since A > 0 now, we have ¢ > 0. In this case J attains its maximum on the first set
of (28) and its minimum on the set (29). Lemma 1 shows that us and p; have to
be spread over these two sets respectively. From (27) and 4cos a + ¢ = 0 we get
the equalities

(ki _(k_ ~_Ak+2)
c-2A(2+1 (2 1)cosa>, cosaz—)‘(k_z)_4 and

(30) Ro(po)=(k/2+1)—(k/2—1)cos2a + A(k2+1~(k/2—Dcosa)
for each of these distributions. If u, is spread over (29) in such a way that the
two subsets corresponding to + a and to — a carry the same weight 3(k/2—1),
condition (25) is satisfied as well and u, maximizes R(u) for the chosen c,
0<c <4. Indeed, the second equation of (30) shows that these extremal
measures only occur when 0 < Ak <2.

Thus we determined the set of extremal measures for A > 0.

By setting mé =m/2+m¢ in case of A <0 we reduce the problem to
maximize

Ro(p) = —j cos2me du. +| A | (j cos m¢ dp)2



62 R. BOUTELLIER AND A. PFLUGER Israel J. Math.

over M, Here the indicator is J(¢)= —cos2m¢ +ccosm¢d where ¢ =
2| A |f cos mpdue and w, is an extremal measure. This leads to a discussion very
similar to the one before.

In going back to the situation of n =2m +1 in Theorem 4 we choose for po
and po equally distributed measures over the first set of (28) and over (29)
respectively. The measure po = o — o then will be extremal for R(x) and the
corresponding functions fi(z) (for 2m =k) and fx(z) (for 2m = k) will be
extremal for Re a,. They are m-fold symmetric and together with the functions
— fi(—z) and — f,(— z) they are the only m-fold symmetric extremals for Re a,.
But there are many more extremal measures satisfying the constraints (23), if
mz3.
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