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SOME EXTREMAL PROBLEMS FOR FUNCTIONS 
OF BOUNDED BOUNDARY ROTATION 

BY 

ROMAN BOUTELLIER AND ALBERT PFLUGER 

ABSTRACT 

A variational method is developed within the class of functions of boundary 
rotation not exceeding k~r which is based on the fact that the set of representing 
measures g is convex. It shows that an extremal problem related to a functional 
with G~teaux derivative and some constraints leads to extremal measures ~,, 
with finite support. The positive and negative part of a go is located at points 
where a function J (depending on go) reaches its maximum and minimum 
respectively. The method is tested successfully on various problems. 

1. Introduction 

For  k _-> 2 let Vk deno te  the class of locally univalent  functions, 

f ( z ) =  z + a2z2+ . . .  + a , z "  + . . . ,  

in the unit disc D = {I z [ < 1} which have boundary  rota t ion at most  k • It, i.e. 

lim,~, do arg ~-~ f ( re ' ° )  __< k • ~. 

A funct ion f with f(O) = 0, f'(O) = 1, belongs to  V~ if and only if it is a solution of 

the differential equat ion  

(1) l + Z f " ( z ) =  if l + e ' ° z  
.f 'tz) 2 l_e ,Oz  d g ( 0 ) ,  

w h e r e / z  is a real measure  with support  on  the interval [0, 2Ir]  (or somet imes  on 

another  interval of  length 2 m  or equivalently on the unit circle { [ z [ =  1 }), such 

that  
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This result is due to Paatero [8]. In the sequel we shall denote  the set of all such 

measures /~ by Mk. Integrating the above differential equation we get the 

integral representation 

(3) f ' (z  ) = exp f - log (1 - e'ez)d/z. 

If the positive part of/x is concentrated on 0 = 0 and its negative part on 0 = 7r, 

we get the function F~, 

= (1 + z )  
(1 - z)E'2÷I, 

which is extremal for many problems in Vk : For example Fk maximizes Re a,  for 

all n within Vk as was shown by D. A. Brannan, J. G. Clunie and W. E. Kirwan, 

and by D. Aharonow and S. Friedland in 1973 (Ann. Acad. Sci. Fenn. Sci. AI,  

523 and 524). 

In the paper we introduce side restrictions of the form 

a2 . . . . .  am =0 .  

As we shall see, this gives rise to certain symmetries. The problems, restricted 

and unrestricted~ are solved by a variational method which is an elaboration of 

the simple fact that Mk is convex. The method may be applied to other kinds of 

extremal problems involving such measures. 

2. Standard variations (/z~-variations) 

We denote  by H the space of holomorphic functions on the unit disc, provided 

with the topology of locally uniform convergence. Let ~b be a complex-valued 

functional on Vk which is Gfiteaux differentiable on Vk, i.e. for each Jr E Vk there 

exists a continuous linear functional L = L t on H, such that 

(4) ~b(f + e g ) =  ~b(f)+ e . L ( g ) + o ( e ) ,  e-'>O, 

for each g @ H with jr + eg ~ Vk, where o(e)/e converges to zero uniformly in g 

on a compact subset of H. L¢ is called the Gfiteaux derivative of ~b at Jr. Since 

g(0) = 0, there exists on H a continuous linear functional L'  such that L ( g ) =  
L'(g')  for functions g appearing in (4). Thus we may write (4) in the form 

(5) 6 ([ + eg) = ¢~ ([) + e . L '(g') + o (e). 

For each /zo of ME we define a class of standard variations by 

/z, = (1 - e) . /z0 + e . / z  =/Zo + e (/z - t*0), 
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where/z is in Mk and 0 =< e _<- 1. Since Mk is convex, this is a variation within Mk. 

Let by the integral (3) ['~ correspond to ~, ; then [', is the standard variation of 

[~ corresponding to the arbitrarily chosen ~ of Mk: 

f'~ (z) = exp f - log(1 - e '°z)d (~o + e (/~ -/-~0)) 

= f ~ ( z )  - e . f ~ ( z )  f log(1  - e'°z)dOz - ~ 0 ) +  o(e2). 

By the integration we get the standard variation of/Co: 

f, = fo+  + 

where 

f 
(6) g ' (z)  = - J ]~ (z) log (1 - e '°z)d (g  - go). 

Thus, from (5) it follows 

ck([, ) = ck(fo) + eL(g + O(e )) + o(e ) 

(7) = 4)(/o)+ eL'(g')+o(e). 

L'  has the well known representation (see e.g. [13]) 

(8) L'(g') = fc g'(¢)d~b(~), 

where $ is a finite Borel measure on a compact subset C of D. Thus, if [o 

maximizes Reth in Vk it follows from (7) that ReL ' (g ' )=<0  for all g '  of (6); 

hence by (8) 

Define now 

(9) 

to get 

(10) 

for al l /z  E M~. 

Re { fc - [~(l~) log(1- e'°¢)d~b(l~)d(l~ - tzo) } <= O. 

J(O) = - Re fc /~(~)log (1 - e'°~)d~b(~) 

f 
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This is a necessary condition for f,, to maximize Re ch in Vk. J is called the 

indicator corresponding to f,, and L. 

In order to get more information from condition (10), let us recall that any two 

probability measures v and v' on [0,27r] define by 

(11) /x = (k/2+ 1). v - ( k ~ 2 -  1). v' 

a measure of Mk and that conversely each/z  of Mk is representable in this form. 

((k/2 + 1)v and (k/2 - 1)v' need not be the upper and lower variation of/~, see 

[101.) 
Let now vo and eL be two probability measures representing the extremal 

measure tz0 in (11). It follows from inequality (10) by choosing first v arbitrarily 

and v ' =  v[,, second v = v. and v' arbitrarily, that 

J J(O)d(v-vo)<=O and J J(O)d(v'-v;)>-O 

for all probability measures v and v'. These two conditions imply that v0 is 

supported by those points of [0, 27r1, where J reaches its maximum, and v~, by 

those points where J attains its minimum. 

Therefore,  it is of interest to know in which cases J(O) is not a constant, 

because then, J(O) being real-analytic, the sets supp v0 and supp v0 have to be 

finite. 

The claim is that J(O) is constant (hence zero) if and only if the G~teaux 

derivative L is constant on Vk. This may be seen as follows. J being constant 

implies by (9) L'(z"f~(z))= 0, n = 1 , 2 , . . . .  Hence L ' (g f~)=  0 for each g of H 

with g(O) = O, and because of f~(z) # 0 in D it follows L ' ( f  - f(O)) = 0 for all f of 

H. From L (f - f (O) )  = L'(f') we conclude that there are constants a and b such 

that 

L (f) = a .  f(0) + b .  f '  (0), f ~ H, 

and this implies that L is constant on Vk. 

The converse is trivial because for each 0 the analytic function 

f~ (z)log(1 - ze'°) is the locally uniform limit of functions of V~, the derivatives 

of Vk. 

Therefore,  if L is not constant on Vk, the indicator J has finitely many 

(absolute) maxima carrying vo, and finitely many (absolute) minima carrying v~'~. 
Hence, vo and v~ have disjoint supports and this implies that tx~ = (k/2 + 1)vo 

and/zff = (k/2 - 1)v~ are the upper and lower variation of/x0. Thus the extremai 

function [o has boundary rotation precisely k. 
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Summarizing we have 

LEMMA 1. Let 4~ be a functional on V~ admitting at each function of Vk a 
G~teaux derivative which is not constant on Vk. Let fo maximize Re 4~ within Vk 
and let J be the indicator (9) corresponding to fo and the G&teaux derivative L at fo. 
Then, if ~zo is the representing measure of fo, the inequality 

f J(O)d(lz - tXo)<=O 

is satisfied for each Ix of M~. This extremality condition holds if and only if the 
positive and the negative part of tZo is carried by those disjoint finite subsets of 
[0, 2zr] on which J reaches its maximum and minimum respectively: 

supp t ~  C {0 : J(O) = max J}, 

(12) 
supp/~a C{0 :J (0)  = min J}. 

Moreover, the boundary rotation of fo is precisely k. 

REMARKS. (1) Support points of Vk are extremals of linear functionals which 

are not constant on V~. Lemma 1 immediately implies that each support point of 

V~ has boundary rotation k and has a representing measure with finite support. 

(2) Lemma 1 sharpens a result given by Kirwan and Schober [2] which says 

that the extremal function f0 has a representing measure with finite support and 

total variation =< k. 

(3) Although at first glance condition (12) looks quite promising for solving 

extremal problems one has to be aware that the indicator J depends on the 

unknown function f0 and this dependence can have a severe impact on the  

number and the location of the maxima and minima of J. Nevertheless it is 

possible to come to a complete determination of the extremal measure in quite a 

few cases (cf. [1] for the case of starlike functions). 

Now we add constraints to our extremal problem by introducing on Mk the 

functionals 

xj(tz) = I X~(O)d~, j = 1, . . . ,  n, 

where the X/(0) are real-valued functions on [0, 27r]. For fixing the situation we 

suppose that they are continuous and that no non-trivial linear combination of 

them is constant. Therefore the set 

(13) a = {(x~(/~), • • ", x, (/x)) ]/~ E Mk }, 
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which is a compac t  and convex  subset  of R" contains  inter ior  points,  i.e. A is a 

convex body  in R ". 

Let  J(O) be  a rea l -valued and cont inuous  funct ion on [0, 27r] such that  J(O), 
X~!O) . . . . .  X,(O) and the cons tant  1 are l inearly independent .  Choose  a point  

= (~:~, . . . ,  s¢,) in the inter ior  of A and consider  the p r o b l e m  of maximizing on 

Mk the functional  

y( ix)  = f J(O)dix 

under  the side condi t ions x , ( g )  = s~,, j = 1, ."  ', n or short ly x(ix)  = ~. 

LEMMA 2. Let the function J ,X~, . . . ,  X,  satisfy the above conditions and 
consider, with the above notations, the problem of maximizing y (l~ ) over Mk under 
the constraints x(tx)= ~, where ~ is an inner point of A. Then there are real 
numbers A~,-" ", A, ( Lagrangian multipliers) such that 

max (y (IX) + A ~x ~(IX ) + . - .  + A,x, (p.)) = max  {y (/x)1 ~ E Mk, x (/x) = s~}. 
Mk 

PROOf. The  set 

B = {(y (ix), x , ( ~ ) , . . . ,  x° (~))}.~,., 

is a convex  body  in R "+'. Because  s ¢ is in the inter ior  of A, the straight  line x = s ~ 

in R "~' intersects  B in a segment  not reducing to a point.  Let  9 be  its uppe r  

endpoint ,  i.e. 

9 = max{y  tx = s ¢ , ( y , x ) E  B}. 

Obvious ly  (9, ~) is on the bounda ry  of B and there  is at least one suppor t ing  

hyperp lane  to B through (9, so) • 

Let  Ao, A , , . .  ,, A, be  a normal  vec tor  such that  

,~,,(y- 9)+ A, (x , -~ , )+  . . .  + ,~ . (x° -  ~o)<0 

for  all inter ior  points  (y, x )  of B. Let  (y,, ~) be  such an inter ior  point  which 

obviously exists. Then  it follows Ao(yl - Y) < 0 and because  of y, < : this implies 

Ao > 0 and there fore  we always may  assume Ao = 1. 

H e n c e  

max (y (/z) + A ~x,(g ) + . . .  + A.x. (IX)) = ; 
Mk 

which proves  the L e m m a .  
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The implications of Lemmas 1 and 2 for constrained extremal problems in Vk 

are given in the following 

THEOREM 1. Let the functions X,(O), j = 1 , . . . ,  n, be real-analytic on [0,2Ir] 

and let them together with the constant 1 be linearly independent. Let the 

functional dp on Vk admit Gfiteaux derivatives L = L I for each f of VE such that the 

corresponding indicators J are never a linear combination of the X, and the 

constant 1. If fo maximizes Re dp over Vk under the side conditions 

(14) f X,(O)dtz = ~,, j = 1 , . . . ,  n, 

where (~,  . . ., ~, ) is an inner point of A (cf. (13)), then its representing measure lz,, 

has [inite support, its total variation Illzol[ is k (i.e. fo has boundary rotation k ), and 

there are multipliers A ~, . . ., A, such that on the disjoint supports of the upper and of 

the lower variation of tXo the function 

Y = J + A~X~ + " "  +A,X, 

reaches its maximum and its minimum respectively, i.e. we have the relations (12) 

with J replaced by Y. 

PROOF. From the section preceding Lemma 1 it follows that 

[J (O)d( l x - / z0 )  =<0 for each measure /x of Mk satisfying the constraints (14), 
because /x~ ---/z0+ e( /z- /~o) ,  0 =  < e-< 1, satisfies (14) if /z0 and /x do so. This 
implies that/zo maximizes the functional f J(O)dl.~ over Mk under the conditions 
(14). Being this way within the frame of Lemma 2 the conclusion of Theorem 1 

follows at once, since Y is real-analytic and non-constant. 

3. The range of log f' (a) 

To each f of VE corresponds the function logf ' (z) ,  which is holomorphic in 

the unit disc D and vanishes at the origin. For a fixed a E D we consider the 

range 

Rk(a)  = { logf ' ( a ) : f  E Vk }. 

Without loss of generality we may suppose a to be positive. Since M~ is convex 

and 

logf ' ( a )  = ~ - l o g ( 1  - ae'°)dlz, lz E Mk, 

the range Rk (a)  is convex as well, and it contains the origin since the identity 
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mapping belongs to V~. To determine the boundary of Rk(a )  it is therefore 
sufficient to maximize 

(15) Re{e-'* log f ' (a)} 

within V~ for each ~b E R. 

The corresponding indicator J is given by 

J(O) = R e { -  e -i* log(1 - aeiO)}. 

The curve 

O---~log(1-aei°),  O<=O<_2m 

is convex and so the support of the extremal measure/Xo consists of exactly two 
points: /xg and/Zo are concentrated at the points where J reaches its unique 
maximum and minimum, respectively. At these points we have 

~ 0 = R e { e , ,  iae i° } a [2im{e_i,(elO 
1 - a e ' °  = [ 1 - a e  io - a ) }  

and they are obtained by intersecting the unit circle with the stratght line 
{a + he'* : X ~ R}. 

THEOREM 2. For each a of (0, 1) the range 

R k ( a ) = { l o g f ' ( a ) : f  E Vk} 

is convex and its boundary is given by the curve 

0 ---, - (k /2  + 1)log (1 - ae ,0) + (k/2 - 1)log (1 - ae io,), 0 E 10, 27r I 

where e ,o and e io, lie on a straight line through a. 

For ~b = 0 in (15) the above theorem is due to Loewner [6] and for $ = 7r/2 to 
Paatero [8]. For general 4~ see [10] and [11] as well. 

Now we consider the problem of maximizing Re {log / ' ( a  )} under the side 
condition f"(0) = 0, i.e. to determine a function fo in Vk such that fg(0) = 0 and 

Re {log f~ (a)} = max Re {log f ' (a) :  f ~ VE, f"(O) = O} 
(16) 

= m a x { - ~ l f l o g ( l + a 2 - 2 a c o s 0 ) d l z : t z E M k ,  f e ' ° d l ~ = 0 }  

Note that f"(O)= 0 for all odd functions of Vk. 
The indicator corresponding to L = Re{log/ '(a)} is given by 

J(O) = -½log(1 + a 2 - 2a cos 0}. 
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According to Lemma 2 there are multipliers k~ such that with 

Y(O) = J(O) +/~1 cos 0 +/~2 sin 0 

we have 

(17) rnMax f Y(O)dlz = f J(O)dtzo, 

where/zo is the representing measure of /o.  Referring to the proof of Lemma  2, 

with cos 0 = X~(O) and sin 0 = X2(0), the functionals y(p.) and x,(/x) remain 

unchanged while x2(/~) changes sign i f / z (0 )  is replaced b y / 2 ( 0 )  = /z (2 r r  - 0). 

Therefore  the body B is symmetric to the plane x2 = 0 and consequently we may 

choose ,~2 = 0. Hence supp p.~ and supp/zo are subsets of [0,27r], where 

Y(O) = J(O) + )t, cos 0 

attains its maximum and minimum respectively. The derivative 

d Y _  ( a + k , )  
dO s i n 0 .  l + a  2 - 2 a c o s 0  

vanishes for 0 = 0 and 0 = rr and possibly for two other points a and - a, where 

0 <  a < rr and a + k~( l+  a 2 - 2 a  c o s a ) = 0 .  If 0 and rr were the only zeros, 

Y(O) would have the only maximum at 0 = 0 and the only minimum at 0 = ~r, or 

vice-versa, and this would violate the side condition f cos Odtto = 0. Hence  there 

are two further zeros a and - a. Since the second derivative d 2 Y/dO 2 is positive 

for 0 -- - a ,  these are the points where Y attains its minimum. Local maxima 

and minima being alternating it follows that 0 - -0  and 0 = 7r are maxima. But 

/.t,~ cannot be carried by 0 = 0 or 0 = ~r alone, because of the restriction 

fcosOdl~o=O. Both points have to be absolute maxima and the equations 

Y(0) = Y(Tr) and dY/dO (a )=0  determine kl and a :  

l + a  z 1 a 
- -  l + a '  ~ < c o s a  < a .  (18) c o s a =  2a logi_ a 

The side conditions f cos Odlzo = f sin Odlzo = 0 imply that /Zo has equal masses 

~(k/2 - 1) at 0 = - a and that /z~ has masses (k/2 + 1). m and (k/2 + 1). (1 - m)  

at the points 0 = 0 and 0 = ~r respectively, where 

(19) m = ~  l + ~ - ~ - - ~ c o s a  , m E  , - - - ~  . 

It is interesting to observe that a depends on a but not on k. 
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THEOREM 3. Let the/unction/o maximize Re{logf'(a)} among those [unc- 
tions / of Vk that satisfy the side condition/"(0) = O. Then/o is unique and 

~(- '"z e-i°tz )]k/4-1/2 
f ; ( z ) = [ (  _e ) (1 -  

1 z)m(1 + z),-mlk, 

where ct and m are defined by (18) and (19). 

REMARKS. (1) The function f0 of this Theorem is odd if and only if k = 2, i.e. 

in this case the extremality of I f'(a)l under the condition f"(O) = 0 forces fo to be 

odd, but no more if k > 2. 

(2) In [9] J. A. Pfaltzgraff and B. Pinchuk introduced the class A k of 

meromorphic functions of boundary rotation =<k. These are functions rep- 

resented in D by f (z  ) = 1/z + bo + b~z + . . .  such that 

f ' ( z )~O and [ imf  ldoargd-~f(re'°)[<=k. 

For a fixed a, 0 < a < 1, these authors considered the problem of maximizing 

and minimizing I/'(a)l over Ak. They have shown that f ~  AE if and only if 

f(z)= -Sexpf log(1-ze'°)dlz, 

where tt E Mk and f e'Odg = 0, and, using a Golusin type variation, have shown 

that the extremal measures have to be located on at most 4 points of [0, 2zr]. 

Using this fact J. Noonan [7] has completely determined these measures with a 

method working in this specific situation. 

The problem actually reduces to maximizing and minimizing f log [ 1 - ae io I dlz 
over M~ under the side condition f e ~0 d g =  O. The minimum part of it has been 

also solved above and the maximum can be handled in a similar, although 

slightly more complicated way. Along the same line one can solve the same 

problem under a side condition f ei° d g =  r, where r is a given number of the 
interval ( - k, k). 

4. Vanishing first coefficients 

Let us recall that / E  Vk if and only if 

l + z . f " ( z )  I f  l+ei°zdl.~ 
/ ' (z)  = i -e'°----z 

= l + c l z + c z z 2 +  " ' ' ,  
where 
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c. = f e'"°dlz 

Compar ing  coefficients we get 

(20) 
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and ~ E Mk. 

2 • 1 • a2 = CI, 

3 • 2" a3 = C2 + 2a2"  Cl, 

n • (n - 1)a. = c._~ + 2a2c._2 + . . .  + (n - 1)a._lc,. 

Israel J. Math. 

that the situation changes completely if n = 2 m  + 1. 

THEOREM 4. Let f E Vk satisfy the conditions (21): 

f ( z  ) = z + am+~z"+' + a=+2z"+2 + . . . ,  

Then 

m ~ 2 .  

k 
< i[m<n<__2m,  Re a.  = n (n - 1) '  

The  next theorem shows that this remains true for all n with m < n < 2m and 

k 
n m 

I ( z )  = z + n ( n  - 1) z + " " "  

Hence  

(22) 
[(1 + z-- ,) , ,~- ,  1,,--,  

f '(z) = / ( 1  - z"- 'y '=+'  J 

Thus 

(21) a2 . . . . .  am = 0 

if and only if 

C I  = " ' "  = C , n - l  = O ,  

and in this case the recursion formula (20) simplifies to 

n ( n - 1 ) . a . = c . _ l ,  m < n < - 2 m  

= c 2 m + l . c ~ ,  n = 2 m + l .  
m 

Schitter and Tammi  [12] have shown by the help of their variational method,  that 

for n = m + 1 the maximum of Re a., under the restrictions (21) is attained by 

the symmetric function 
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and equality occurs [or the (n - 1)-fold symmetric function f given by (22). 
If  n = 2m + 1 then 

2m(2m + 1)Re a. <-2+k2/m form <-_k/2 and 

+ ( k + 2 )  2 
2m(2m + 1)Re a, =< k 4m - ( k  - 2 )  for m >- k/2. 

In the first case equality occurs for the function fl with derivative 

[(1 + z")k/2-1 ] ~/" 
f l (z )  = i_(l_ z.y,~+, j 

= l+---k zm + 2+  z2m+ . . .  
m 

and for the function - f ~ ( - z ) .  In the second case we have equality for the 

functions f2(z ) and - [ 2 ( -  z ), where 

' z [ (1 -e" z" ) (1 -e - ' ' z " ) k ' 4 -~ '~]~ ' "  
f2( ) = (1 - z " )  kn+' ] 

= l + l [ ( k +  1 ) -  ( k -  1 ) c o s a ] z  " 

+-L-1 [ k +  (k+2)2  /] 
2m 4m - ( k  - 2 ) j  z2" 

+ • g o 

and a is given by 

k + 2  
cos a = k - 2 -  4 m '  a E (Ir/2, It). 

REMARK. Let f ( z )  = 1/z + ao + alz + .. • + a,z" + ..  • be a function of the 
class A k as defined in Remark (2) following Theorem 3. Noonan [7] has shown 
that [a~l = k/2 and l a21--< k/6, and that these bounds are sharp. To determine 
the maximum of I a3[ o v e r  A k it is sufficient to find min Re a3 within this class. 
From z 2. f ' ( z )  = - exp( - g(z)) ,  with 

it follows 

- ! c  z2 +~c3z3 +~c4z4 + and g ( z ) -  2 2 . . .  

c,=f j = l , 2 , - - . ,  

3a3  ~ 1(C4 1 2 - -~C2) .  
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It thus remains  to maximize R e { f  e ''8 - ~ ( f  e2'°dtt)  2} over  M~ under  the side 

condi t ion f e~edl~ = 0. As  it turns out  in the following proof ,  this is just  the  

p rob lem of the above  t heo rem for  m = 2 and n = 5. 

I~ooF. (1) Case: m < n _-__ 2m 

This case can be set t led without  any variat ional  method:  with /z = 

(k/2 + 1)v - (k /2-  1)v'  (el. (11)) we have 

n(n - 1)Re a ,  = f cos (n  - 1)Odtt 

(k/2 + 1) f cos (n  - 1)Odv-(k/2- 1 ) f  cos (n  - 1)Odv' 

<-- k/2 + 1 + (k/2 - 1) = k. 

Equal i ty  occurs if and only if v and v'  are concent ra ted  on the sets 

• f 2 j+ l  zr}, {O~,=n2]l~r ) and ~ 0 2 , + , = n _  1 j = 0 , ' " , n -  2, 

respectively.  For  equal ly distr ibuted measures  we get (22), and the  first par t  is 

proved.  

For  any probabil i ty measures  v={(O2j, v~)} and v'={(O2j+l,v~)}, j=  
0," •.,  n - 2, on the above  sets, the  condit ions ci . . . . .  c,, = 0 toge ther  with 

Y. v~ = 1 and E v; = 1 represent  a l inear system which admits always the solut ion 

vj = v ~  = 1 / ( n  - 1), but  there  is only this one  if n = m + 1. 

(2) Case: n = 2m + 1 

H e r e  we have to maximize 

( 2 m +  1)2m Re  a2.+~ = Re{f e'2"°dlz +l__(fm e"°dl~) 2 } 

= cos 2too dl~ + 1 cos mO dp. 
m 

- ~ sin mO d~ , 

under  the  restrictions 

cj = f e q°dtz = 0, j = 1 , . - . ,  m - (23) 1. 

The  integral  f sin raOdp, has to vanish in the ext remal  case, because otherwise  
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the measure /Zo=~(/~o(0)+/z0(2zr- O)) would yield a bigger value. Thus it 

remains to maximize 

R(~)= f cos2,nOd~ +~ [f cosmOd~] 2 
under the restrictions (23). The indicator J corresponding to the functional R (/z) 

is given by 

J ( O ) = c o s 2 m O + c . c o s m O ,  where c =2 f cosmOa.o. 

Using complex notation Lemma 2 and Theorem 1 imply that there are complex 

multipliers a l , " - ,  A,~_1 such that 

max [y (ix) + Re {A1 cl(/z ) + . . .  + a=_~cm -1(~[~ )}] = )7, 

where Y(t~) = f J ( O ) d ~  and 

y = max{y(/z) I g ~ Mk, cs(tt) = O, ] = 1," "., m - 1}. 

Let e = e 2"/"~ and let /xk be obtained from a measure /~ by setting /z~(0)= 

g(O + 2 ~ ' k / m ) ,  k = 1 ,2 , . . - ,  m - 1 .  Since J remains unchanged and the cj(/x) 

get multiplied by e jk when g is replaced by /xk, it follows that all the points 

(y, clek, .. -, cm-~e k~m-l~), k = 0, 1 , ' -  -, m - 1, belong to the body B considered in 

the proof of Lemma 2, if one of them does so. Adding the inequalities 

ra--1 / 
y + R e t ~ ; t , c , e  k' <-_ y, k = 0 , 1 , . . . , m - 1 ,  

implies y(/~) _-__ y for /z  E Mk and because of maxM, y(/~) _-__ )7 we conclude that 

maxM~y(/z) = )7, i.e. the extremal measures of our problem are among those 
which maximize R (/x) over ME. Thus we first may handle the problem as if there 
were no constraints and then single out those extremal measures which satisfy 
the side conditions (23). 

The maximum of R (/z) over Mk was determined by R. J. Leach (of. [4]). Using 
a stepfunction method he showed that 

k 2 
R(t~)_<-2+ - for m <= k /2  and 

m 

(k + 2) 2 for m > k/2 ,  
R (/x)--- k + 4 m  - ( k  - 2 )  -- 

and that the functions f~ and f2 in Theorem 4 are extremal respectively. 



60 R. BOUTELLIER AND A. PFLUGER Israel J. Math. 

5. In order to get all extremal functions, we consider the general problem of 

maximizing the functional 

=f cos2mOd +, (f cosmOdt.,)2-, (f sinmOd ) 2 

over M~ without any constraints, where A is a real number and m a positive 

integer. 

For m = 1 this problem has been solved by Kirwan and Schober [3] as well as 

by Lehto and Tammi (cf. [5] on page 79) with different methods. 

The case A = 0 is trivial. We have R (/~) _-< k and equality occurs if and only if 

/~ + and/~ - (the positive and negative variations of/~) are carried by the sets 

0 "n" m - 1  "a" 3"tr 2m - 1  . . . . .  7r and - -  - - , . . - , ~ , r  (24) ' m '  ' m 2 m ' 2 m  m 

respectively. The distribution of /x  + a n d / z -  within these sets is irrelevant. 

If a > 0 ,  we get 

f sin mOdlzo = 0 (25) 

as a first necessary condition for an extremal measure t~o, and it remains to 
maximize 

Ro(~ ) = f cos 2mO d~ + A ( f cos mO dv~) 2 

over Mk. Lemma 1 provides a second necessary condition, namely 

(26) 

where 

f J(O)d(  - <= 0 for all/~ of Mk, 

(27) J ( O ) = c o s 2 m O + c . c o s m O  and c = 2 A . f  cosmOdtzo. 

According to this lemma, /~o has to be concentrated on the zeros of 

dd / dO = - m • sin toO. (4cos mO+ c). 

It is sufficient to consider the case c _->0, because the equation /x~(0)= 
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#o(O + r,'/ra) establishes a one-to-one relation between the measures /z,, corre- 

sponding to some c and those which correspond to c ' =  - c .  

Obviously there are the two sets 

(28) {~.2j)j~0.. . .m_ 1 and {~(2j+l )} j~0 . . . .m_ 1 

of zeros, and if I c I --> 4, these are the only ones. J reaches its maximum on the 

first set and its minimum on the second one. Hence /z~  and tzo have to be spread 

over these two sets respectively in a completely arbitrary way, and we get the 

first bound 

R ( / ~ 0 ) = 2 + ) t . k  2 and c = 2 a k .  

Since c => 4, this extremal measure can occur only when Ak _-__ 2. 

If 0 ~ c < 4, there is a unique a in (0, 7r) satisfying 4cos a + c = 0 and we have 

the further zeros 

a 21r+-a 2 1 r . ( m - 1 ) + - a  
(29) - - - -  - - ,  " " ,  

/ 'B'  nl m 

If c = 0, then a = 7r/2 and J reaches its maximum and its minimum on the first 

and the second set of (24) respectively, i.e. we are in the case of A = 0. Hence, 

since )t > 0 now, we have c > 0. In this case J attains its maximum on the first set 

of (28) and its minimum on the set (29). Lemma 1 shows that/~g and p,o have to 

be spread over these two sets respectively. From (27) and 4 cos a + c = 0 we get 

the equalities 

( k  ( k )  ) )t(k +2)  and 
c = 2 A  + 1 -  - 1  c o s a  , c o s a = A ( k _ 2 ) _ 4  

(30) 
R0(/~o) = (k/2 + 1) - (k/2 - 1)cos 2a + )~ (k/2 + 1 - (k/2 - 1) cos a)2 

for each of these distributions. If /~ o is spread over (29) in such a way that the 

two subsets corresponding to + a and to - a carry the same weight ~(k/2 - 1), 

condition (25) is satisfied as well and /x0 maximizes R (/L) for the chosen c, 

0 <  c < 4. Indeed, the second equation of (30) shows that these extremal 

measures only occur when 0 < Ak < 2. 

Thus we determined the set of extremal measures for A > 0. 

By setting mO = ~r/2 + mck in case of A < 0  we reduce the problem to 

maximize 

Ro(~) = - cos2m4~ d~ +l) t  I cos m4~ d~ 
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over Mk. Here the indicator is J ( ~ b ) = - c o s 2 m c k + c c o s m c k  where c = 

21A I f cos m ~ / z o  and ~0 is an extremal measure.  This leads to a discussion very 

similar to the one  before. 

In going back to the situation of n = 2m + 1 in Theorem 4 we choose  f o r / ~  

and /zo equally distributed measures over the first set of (28) and over (29) 

respectively. The measure/J,0 = p , ~ -  p, ff then will be extremal for R (/~) and the 

corresponding functions [l(z) (for 2m = k )  and [2(z) (for 2m = k)  will be 

extremal for Re  a.. They are m-fold symmetric and together with the functions 

- [1( - z )  and - [2( - z )  they are the only m-fold symmetric extremals for Re  a.. 

But there are many more extremal  measures satisfying the constraints (23), if 

m > - 3 .  
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